Effects of extreme drought–rainfall on slope failure mechanisms: centrifuge modelling

Author:

Zhong Haiyi1,Wang Yikai1ORCID,Zhang Shuai1,Zhang Qi1ORCID,Ng Charles Wang Wai1

Affiliation:

1. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China

Abstract

The extreme drought–rainfall seesaw is projected to occur with an increasing frequency. However, there still lacks a thorough understanding of its impacts on slope behaviour, in which desiccation crack plays a key role. To address this issue, a centrifuge test was conducted to investigate the effects of drought-induced desiccation crack on slope instability under extreme rainfall. During the test, the non-cracked slope was firstly subjected to extreme rainfall with 100-year return period. Subsequently, a long-term drying was applied to induce desiccation crack, and hence forming a cracked slope. The cracked slope is then subjected to an identical extreme rainfall. The non-cracked slope only exhibits swelling deformation, whereas for the cracked slope, a slip surface (2 m in depth) is clearly observed to initiate from one deep crack at crest. The global sliding failure of the cracked slope is mainly related to preferential flow, which could result in soil shear strength reduction.

Funder

Research Grants Council, University Grants Committee

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3