Poisson mixture models for regression analysisof stand-level mortality

Author:

Affleck David LR

Abstract

Periodic stand-level mortality data from permanent plots tend to be highly variable, skewed, and frequently contain many zero observations. Such data have commonly been modeled using nonlinear mortality functions fitted by least squares, and more recently by a two stage approach incorporating a logistic regression step. This study describes a set of nonlinear regression models that structure stochastic variation about a mortality function according to basic probability distributions appropriate for non-negative count data, including the Poisson, negative binomial (NB), and generalized Poisson (GP). Also considered are zero-inflated and hurdle modifications of these basic models. The models are developed and fit to mortality data from a loblolly pine (Pinus taeda L.) spacing trial with a conspicuous mode at 0. The sample data exhibit more variability than can be accommodated by a Poisson or modified Poisson model; the NB and GP models incorporate the extra-Poisson dispersion and offer an improved fit. A hurdle NB model best describes this sample, but, like the zero-inflated models and two-stage approach, modifies the interpretation of the mean structure and raises the question of overfitting. Considering both data-model agreement and the biological relevance of these models' components, the analysis suggests that the NB model offers a more compelling and credible inferential basis for fitting stand-level mortality functions.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3