Abstract
Two controlled-environment studies examined growth and ecophysiological responses of black spruce (Piceamariana (Mill.) B.S.P.) seedlings to elevated CO2 under varied water and nutrient additions. Growth analyses were conducted followed by measurements of gas exchange, xylem pressure potential and foliar N concentrations. Growth under elevated CO2 (700 ppm) increased final seedling dry weights by 20–48% compared with seedling growth under ambient CO2 (350 ppm). Percent increases in seedling dry weight were greater under drought versus well-watered conditions and higher versus lower nutrient additions. Seedlings grown under elevated CO2 displayed higher water use efficiency than seedlings grown under ambient CO2. This was apparent based upon instantaneous gas exchange as well as xylem potential pressure measurements. Elevated CO2-induced stimulation of relative growth rate was greatest shortly after seedling emergence and decreased with increased seedling size. Acclimation of net photosynthesis was observed and was reversible. Analyses using allometric principles indicate net photosynthetic acclimation resulted from: (i) growth-induced nutrient dilution; (ii) a decrease in foliar N levels not owing to dilution; and (iii) a decrease in net photosynthetic activity.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献