The Queen Charlotte Islands refraction project. Part II. Structural model for transition from Pacific plate to North American plate

Author:

Mackie D. J.,Clowes R. M.,Dehler S. A.,Ellis R. M.,Morel-À-l'Huissier P.

Abstract

The oceanic-continental boundary west of the Queen Charlotte Islands is marked by the active Queen Charlotte Fault Zone. Motion along the fault is predominantly dextral strike slip, but relative plate motion and other studies indicate that a component of convergence between the oceanic Pacific plate and the continental North American plate presently exists. This convergence could be manifest through different types of deformation: oblique subduction, crustal thickening, or lateral distortion of the plates. In 1983, a 330 km offshore–onshore seismic refraction profile extending from the deep ocean across the islands to the mainland of British Columbia was recorded to investigate (i) structure of the fault zone and associated oceanic–continental boundary and (ii) lithospheric structure beneath the islands and Hecate Strait to define the regional transition from Pacific plate to North American plate and thus the nature of the convergence. Two-dimensional ray tracing and synthetic seismogram modelling of many record sections enabled the derivation of a composite velocity structural section along the profile. The structural section also was tested with two-dimensional gravity modelling. Part I of the study addressed the structure of the fault zone; part II addresses lithospheric structure extending eastward to the mainland.The derived velocity structure has some important and well-constrained features: (i) anomalously low crustal velocities (5.3 km/s with a 0.2 km/s per km gradient) underlain by a steep, 19 °eastward-dipping boundary above the mantle in the terrace region west of the main fault; (ii) a thin crust of 21–27 km beneath the Queen Charlotte Islands; and (iii) a gentle 4 °eastward dip of the Moho below Hecate Strait as crustal thickness increases from 27 km to 32 km. The gravity modelling requires that mantle material extend upwards to a depth of about 30 km below the mainland and indicates that an underlying subducted slab, if it exists, extends eastward no farther than the mainland.Unfortunately, the velocity structure delineated by this study could not unambiguously determine the mode of deformation, because the lowermost crustal block beneath Queen Charlotte Islands and Hecate Strait can be interpreted as subducted oceanic crust or middle to lower continental crust. Thus, two different tectonic models for the transition from Pacific plate to North American plate are discussed: in one, oblique subduction is the principal characteristic; in the other, oceanic lithosphere juxtaposed against continental lithosphere across a narrow boundary zone along which only transcurrent motion occurs is the dominant feature. Based on the thin crust beneath the Queen Charlotte Islands, the lack of a wide zone of deformation along the plate boundary region, and other geological and geophysical characteristics, oblique subduction is the more plausible model.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3