Ecosystem nutrient responses to chronic nitrogen inputs at Fernow Experimental Forest, West Virginia

Author:

Gilliam Frank S.,Yurish Bradley M.,Adams Mary Beth

Abstract

Among the current environmental concerns for forests of the eastern United States is nitrogen (N) saturation, a result of excessive inputs of N associated with acidic deposition. We studied nutrient responses on N-treated and untreated watersheds of the Fernow Experimental Forest, West Virginia, to test for evidence of N saturation on the treated watershed. The watersheds were WS7 (23-year-old even-aged control), WS4 (mature mixed-aged control), and WS3 (23-year-old even-aged treatment). WS3 has received aerial applications of (NH4)2SO4 from 1989 to the present (a total of 4 years for the study period) at 3 × ambient inputs of N and S (54 and 61 kg•ha−1•year−1, respectively). Base-flow stream samples were collected weekly from each watershed and analyzed for NO3 and Ca2+. Mineral soil was incubated in situ, placed in bags, and buried about every 30 days during the growing season in each of seven sample plots within each watershed. Moist samples of soil from the bags were analyzed for extractable NH4+ and NO3. In addition, forest floor material and leaves of an herbaceous species (Violarotundifolia Michx.) from each plot were analyzed for N and other nutrients. Violarotundifolia was present on all 21 plots and used as an additional indicator of N availability and soil fertility. Foliage tissue was sampled from overstory tree species (Liriodendrontulipifera L., Prunusserotina Ehrh., Betulalenta L., and Acerrubrum L.) from WS3 and WS7 and analyzed for nutrient content. Results from the 1993 growing season showed few, if any, differences among watersheds for (1) N content and C/N ratio of the mineral soil and forest floor and (2) relative proportion of NH4+ and NO3 produced in the buried bags. Nitrification rates were equally high in soils of all watersheds; N concentrations were significantly higher in foliage tissue of overstory tree species and of V. rotundifolia in the treatment versus control watersheds; plant tissue Ca was significantly lower for the treatment watershed than for the control watersheds. Our results support the conclusions of earlier studies that high amounts of ambient N deposition have brought about N saturation on untreated watersheds at the Fernow Experimental Forest. This is suggested by minimal differences among watersheds in N mineralization and nitrification and soil and forest floor N. However, aggravated N saturation on our treated watershed can be seen in differences in plant tissue nutrients among watersheds and streamflow data, indicating increased losses of NO3 with accompanying losses of Ca2+ in response to further N additions to a N-saturated system.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3