Unusual drawdown curves for a pumping test in an unconfined aquifer at Lachenaie, Quebec: field data and numerical modeling

Author:

Chapuis Robert P,Chenaf Djaouida,Acevedo Nelson,Marcotte Denis,Chouteau Michel

Abstract

An unconfined aquifer was instrumented with monitoring wells over a surface area of about 100 m × 100 m. The aquifer is a sand deposit overlying a thick nonfissured layer of Champlain Sea clay. The paper presents the results of a pumping test at a constant flow rate. None of the curves of drawdown versus time presented the S shape of current theories; however, all drawdowns indicated that the aquifer was homogeneous. The values for the specific yield were too low and varied with distance and time instead of being constant. The theories for steady and unsteady states provided different values for the saturated hydraulic conductivity. To understand the field behavior that differs from theoretical predictions, the pumping test conditions were modeled numerically using a finite element method. The transmissivity was derived from the Dupuit equation, and different curves for capillary retention and unsaturated permeability were examined. The numerical drawdowns agree with the experimental drawdowns. Several numerical models were investigated. All of them solved the inverse problem correctly for steady-state conditions and fairly well for transient conditions with highly nonlinear characteristic functions. The best solution to the transient problem was obtained using trial and error, by considering how the drawdown curves might be modified due to anisotropy and stratification. According to these field tests and the numerical analysis, the S shape is not the rule, and a different shape can be perfectly normal due to the complexity of unsaturated flow.Key words: pumping, unconfined aquifer, permeability, drawdown, numerical modeling.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3