Surges from ice jam releases: a case study

Author:

Beltaos S.,Krishnappan B. G.

Abstract

Accounts by witnesses of spring ice breakup in rivers often mention violent ice runs with extreme water speeds and rapidly rising water levels. Such events are believed to follow the release of major ice jams. To gain preliminary understanding of this problem, an attempt is made to reconstruct a partially documented ice jam release reported recently by others. The equations of the ice–water flow that occurs after the release of an ice jam are formulated. It is shown that the problem may be approximately treated as a one-dimensional, unsteady, water-only flow of total depth identical to that of the ice–water flow, and average velocity. The retarding effect of the frequently encountered intact ice cover below the jam is considered implicitly, that is, by adjusting the friction factor so as to make the predicted and observed downstream stages equal. The effects of jam length are considered next by assuming longer jams of the same maximum water depth. The duration of the surging velocities increases with jam length and so does the peak stage. Less than 2 h after the jam release the surge was arrested and a new jam formed, causing further stage increases. Present capabilities of modelling the reformation process are discussed and the major unknowns identified.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3