Activities of acetylcholinesterase, choline acetyltransferase, and catecholamine production in the spinal cord of the axolotl Ambystoma mexicanum during forelimb regeneration

Author:

Scaps Patrick,Bernet François,Gautron Jean,Boilly Bénoni

Abstract

Amputation of an axolotl limb causes severance of the brachial nerves, followed by their regeneration into a blastema. It is known that these nerves provide a neurotophic factor to blastemal cells. To approach the problem of the response of spinal cord nerve centers to forelimb amputation, we have studied biosynthetic activities in the nerve centers involved in axonal injury during limb regeneration. We report that the acetylcholinesterase (AChE) activity in the spinal cord is elevated 2 days (+ 69%) and 7 days (+ 28%) after limb amputation compared with levels in unamputated control animals, but is not significantly elevated at 3 h or 15 days. The percentages of slow (3.6 S and 6.0 S) and fast (18 S) sedimenting forms of AChE progressively decrease 2 and 7 days after amputation, while those of intermediate sedimenting forms (10.5 S and 14.0 S) increase. Fifteen days after amputation, lower molecular weight forms return to the control level, but the heavy molecular weight form of AChE is absent as at 7 days; consequently intermediate molecular weight forms are in a greater proportion than the other two forms. Choline acetyltransferase activity was measured only 2 days after amputation (when AChE was at its highest level). It increases by about 34% with regard to the controls. Adrenaline is higher than controls 2 days after amputation, while noradrenaline is not significantly modified. The metabolic changes observed in the spinal cord during limb regeneration probably are the result of a general reaction to the stress of amputation (transection of brachial nerves) and regeneration of nerve fibers, since similar metabolic activities were observed after a simple denervation of the two unamputated forelimbs.Key words: acetylcholinesterase, choline acetyltransferase, catecholamines, regeneration, axolotl.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3