Abstract
Our objective was to produce reductions in the luminal volume of Henle's loop and increases in linear flow velocity through the loop. We did this in a recollection micropuncture study by collecting fluid with and without suction from early distal tubules. With suction, transit time of fast green dye through the loop decreased by 34%, calculated loop volume decreased by 28%, and fractional water reabsorption fell from 73.6 to 70.3% (p < 0.025) in water diuretic rats. Absolute water reabsorption did not decrease significantly. In urea–saline diuretic rats transit time decreased 25%, calculated loop volume decreased 22%, fractional reabsorption fell from 59.0 to 51.7% (p < 0.001), and absolute reabsorption decreased by 2.3 nl/min(p < 0.025). Single nephron glomerular filtration rate, distal tubular sodium concentration, and osmolality were unaffected. The less pronounced effect of collection with suction in water diuretic rats may be related to the lower medullary fluid osmolality, which was 338 ± 9(S.E.)mOsmol/kg as compared to497 ± 35 in urea–saline diuretic rats. Collecting fluid with suction from late proximal tubules did not alter glomerular filtration rate or fractional water reabsorption. Stumpe et al. ((1970) J. Clin. Invest. 49, 1200–1212) noted an inverse correlation between fluid reabsorption from Henle's loop and flow velocity in rats with hypertension or congestive heart failure. One can reproduce this correlation by artificially altering the transmural pressure gradient in the loop.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献