Winter Road Surface Conditions Classification using Convolutional Neural Network (CNN): Visible Light and Thermal Images Fusion

Author:

Zhang Ce1,Nateghinia Ehsan1,Miranda-Moreno Luis1,Sun Lijun1

Affiliation:

1. McGill University, 5620, Civil Engineering and Applied Mechanics, Montreal, Quebec, Canada, ;

Abstract

In winter, road conditions play a crucial role in traffic flow efficiency and road safety. Icy, snowy, slushy, or wet road conditions reduce tire friction and affect vehicle stability which could lead to dangerous crashes. To keep traffic operations safe, cities spend a significant budget on winter maintenance operations such as snow plowing and spreading salt/sand. This paper proposes a methodology for automated winter road surface conditions classification using Convolutional Neural Network and the combination of thermal and visible light cameras. As part of this research, 4,244 pairs of visible light and thermal images are captured from pavement surfaces and classified into snowy, icy, wet, and slushy surface conditions. Two single-stream CNN models (visible light and thermal streams), and one dual-stream CNN model are developed. The average F1-Score of dual-stream model is 0.866, 0.935, 0.985, and 0.888 on snowy, icy, wet, and slushy, respectively. The weighted average F1-Score is 0.94.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3