Analysis of queue estimation process at signalized intersections under low connected vehicle penetration rates

Author:

Osama Osman A.1,Bakhit Peter R.2,Ishak Sherif3

Affiliation:

1. Department of Civil and Chemical Engineering, University of Tennessee at Chattanooga, 430D EMCS Building, 615 McCallie Ave., Chattanooga, TN 37403, USA.

2. Arcadis U.S., Inc., Baton Rouge, LA 70816, USA.

3. Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA 23529, USA.

Abstract

This study investigates the factors affecting estimation accuracy of queue length at signalized intersections under low penetration of connected vehicles. A shockwave-based algorithm is proposed to estimate the maximum queue length and residual queue on a cycle-by-cycle basis. Simulation data collected from three consecutive signalized intersections were used to extract trajectories of connected vehicles under five different market penetration rates and two different traffic conditions (under-saturated and moderate). The results confirm that the queue length estimation process is probabilistic and affected by the stochastic changes in traffic conditions. This probabilistic nature is defined by a queue formation coverage index (QI) that proved to significantly affect the queue length estimation accuracy. Overall, the results show that the accuracy of the queue estimates is acceptable when a QI value of at least 50% is achieved. In such limited data environments, the QI showed potential to help as an assessment tool to evaluate the obtained queue estimates.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3