A Fibre-Based Modelling Technique for the Seismic Analysis of Steel-Concrete Composite Shear Walls

Author:

Emrani Seyed MohammadReza1,Epackachi Siamak2,Tehrani Payam1,Imanpour Ali34

Affiliation:

1. Amirkabir University of Technology, 48410, Tehran, Iran (the Islamic Republic of);

2. Amirkabir University of Technology Department of Civil and Environmental Engineering, 473902, Civil Engineering Department, No.717, Faculty of Civil Eng., 424, Hafez Ave, Tehran, Tehran, Tehran, Iran (the Islamic Republic of);

3. University of Alberta, 3158, 9211-116 St., Edmonton, Alberta, Canada, T6G 1H9

4. Alberta, Canada;

Abstract

Steel-concrete composite shear wall offers a favourable lateral strength and deformation ductility for seismic applications while significantly shortening the project schedule through eliminating the use of formworks and taking advantage of modular construction methodology. This paper presents a fibre-based modelling technique for simulation of the cyclic nonlinear response of composite walls by taking advantage of existing reinforced concrete and steel plate shear wall models. The improved modelling technique for cyclic analysis of composite walls that benefits from the macro models available for steel and concrete shear walls is introduced. The model is validated using experimental test data from 20 wall specimens. A sensitivity analysis is performed to examine the influence of various geometrical and material properties using the proposed modelling technique. A step-by-step modelling recommendation is finally proposed. The results show that the proposed modelling technique can efficiently be used to reproduce the nonlinear cyclic response of composite walls.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3