Scientometric analysis and critical review on the application of deep learning in the construction industry

Author:

Mansoor Asif1,Liu Shuai1ORCID,Ali Ghulam Muhammad1ORCID,Bouferguene Ahmed2,Al-Hussein Mohamed1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, T6H 2W2, Canada

2. Campus Saint-Jean, University of Alberta, Edmonton, T6C 4G9, Canada

Abstract

The application of deep learning in construction has attracted increasing attention among researchers in recent years. In this review article, comprehensive scientometric analysis and critical review were performed to analyze the state-of-the-art literature on the application of deep learning in construction. This research used the science mapping method to quantitatively and systematically analyze 423 related bibliographic records retrieved from the Scopus database, and further, a critical review was performed on the collected themes of all the related publications. The results of the critical review indicate that deep convolution neural networks, you only look once, single-shot detectors, recurrent neural networks, residual neural networks, and fast region-based convolution neural networks have been the most widely used deep-learning methods in the construction industry. The most commonly addressed problems in the construction industry using deep-learning methods include classification of construction equipment, worker's safety helmet detection, ergonomics analysis, image enhancement, and feature extraction. This paper provides an in-depth understanding and big-picture overview of the existing literature along with the challenges and future direction of research on deep learning in construction.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3