Use of axle load spectra (ALS) for estimating calibration drift in weigh-in-motion (WIM) systems

Author:

Masud Muhamad Munum1,Haider Syed Waqar1ORCID,Selezneva Olga2,Wolf Dean J.2

Affiliation:

1. Department of Civil and Environmental Engineering Michigan State University, Engineering Building, 428 S. Shaw Lane, Room 3546, East Lansing, MI 48824, USA

2. Applied Research Associates, Inc., Transportation – Mid-Atlantic Division, 7180 Troy Hill Drive, Suite C, Elkridge, MD 21075, USA

Abstract

The road agencies collect and submit weigh-in-motion (WIM) data to the Federal Highway Administration as part of their traffic monitoring program. Therefore, the WIM data should be precise and accurate. One way to evaluate WIM measurement errors is by using the test truck data collected immediately before and after equipment calibration. The limitation of this approach is that the data represent a snapshot in time and may not represent a long-term WIM site performance. This paper presents an approach for estimating WIM system accuracy based on axle load spectra attributes (normalized axle load spectra (NALS) shape factors). This alternative approach allows for characterizing temporal changes in WIM data consistency. The WIM error data collected before and after calibration were related to Class 9 NALS shape factors in the proposed methodology. This paper aims to determine WIM system errors based on axle loading without physically performing WIM equipment performance validation using test trucks. The presented methodology can be used to estimate systematic errors (drift) in the WIM system at any point in time after the equipment calibration. This approach can help highway agencies select optimum timings for routine maintenance and calibration of WIM equipment without compromising its accuracy. The results show that the WIM accuracy for the single axle (SA) and tandem axle (TA) can be estimated with SA and TA NALS shape factors with an acceptable degree of error for bending plate to quartz piezo sensors. Examples are included to demonstrate the application and significance of the developed models.

Funder

National Corporative Highway Research Program

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3