Developing a machine learning-based approach for predicting road surface friction using dash camera images—a City of Edmonton, Canada, case study

Author:

Xie Qian1ORCID,Kwon Tae J.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada

Abstract

Although road surface friction is considered the most effective performance measure for maintenance operations, it is not commonly used due to the high cost of collection. As a result, most jurisdictions use subjective visual indicators that qualitatively describe the state of the road surface, even though they create measurement inconsistencies and offer less detailed maintenance tracking. For maintenance personnel to transition into using friction, the collection cost must be reduced. This paper attempts to do so by proposing a low-cost, machine learning-based method for predicting road surface friction using dash camera imagery and demonstrates its feasibility through a case study. The dataset used for this project was collected in the City of Edmonton, AB, Canada during its 2021/2022 winter season. Three models were developed using tree-based algorithms, where all three displayed high performance with an average root mean squared error of 0.0796 or 79.3% accuracy based on RMSPE.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3