Affiliation:
1. Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur Drive, Ottawa, ON K1N 6N5, Canada
Abstract
Forecasting the time development of scour depth at bridge pier foundations is of great significance to mitigate or avoid the potential failure of bridges. Presently, several models have been developed to predict the scour depth at the base of bridge piers in the case of flood events. This study summarizes existing models for the temporal evolution of bridge pier scour and divides these studies into semiempirical models and empirical models, as well as artificial intelligence models. Several experimental data sets collected from previous studies, 665 points in total, are used to develop a new multigene genetic programming (MGGP) model for temporal scour depth at a circular bridge pier. In addition, independent data, 899 points in total, from previous studies and new physical modeling tests are applied to evaluate the behaviours of existing models, as well as the newly developed MGGP model. It is shown that the MGGP model has good prediction capability when compared with existing empirical and mathematical models.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献