Abstract
Simplified techniques based on in situ testing methods are commonly used to assess seismic liquefaction potential. Many of these simplified methods are based on finding the liquefaction boundary separating two categories (the occurrence or non-occurrence of liquefaction) through the analysis of liquefaction case histories. As the liquefaction classification problem is highly nonlinear in nature, it is difficult to develop a comprehensive model taking into account all the independent variables, such as the seismic and soil properties, using conventional modeling techniques. Hence, in many of the conventional methods that have been proposed, simplified assumptions have been made. In this study, a probabilistic neural network (PNN) approach based on the Bayesian classifier method is used to evaluate seismic liquefaction potential based on actual field records. Two separate analyses are performed, one based on cone penetration test data and one based on shear wave velocity data. The PNN model effectively explores the relationship between the independent and dependent variables without any assumptions about the relationship between the various variables. Through the iterative presentation of the data (the learning phase), this study serves to demonstrate that the PNN can "discover" the intrinsic relationship between the seismic and soil parameters and the liquefaction potential. Comparisons indicate that the PNN models perform far better than the conventional methods in predicting the occurrence or non-occurrence of liquefaction.Key words: cone penetration test, neural networks, prediction, probabilistic neural network, sand, seismic liquefaction, shear wave velocity.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
136 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献