Water transfer in a mature oak stand (Quercuspetraea): seasonal evolution and effects of a severe drought

Author:

Bréda N.,Cochard H.,Dreyer E.,Granier A.

Abstract

The reactions of sessile oak (Quercuspetraea (Mattuschka) Liebl.) to drought were studied under natural conditions in a 32-year-old stand near Nancy (northeastern France) during the summers of 1989 (strongly rain deficient) and 1990. A plot of five trees was subjected to imposed water shortage, while a group of irrigated trees was used as a control. Measurements of xylem sap flows and water potential enabled the computation of plot transpiration, canopy conductance, and specific hydraulic conductance in the soil–tree continuum. Stomatal conductance was measured directly with a porometer. Specific hydraulic conductance of our oaks was of the same order of magnitude as that reported for other species. It decreased significantly during spring because of a time lag between cambial growth and leaf area expansion. Measured transpiration was close to potential evapotranspiration, except during days with high vapor pressure deficits, which promoted stomatal closure in the absence of soil water deficits. Imposed drought caused predawn leaf water potentials to reach values as low as −2.0 MPa and a progressive decline in hydraulic conductance, which was probably attributable to modifications in hydraulic properties at the soil–root interface. This gradual decline in conductance was attributed to their deep rooting (1.40 m). This study revealed that Q. petraea may be considered as drought tolerant because of adaptations like deep rooting, efficient and safe xylem sap transport, maintenance of significant stomatal conductance, and significant transpiration, even during strong drought stress.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3