Molecular responses to high-intensity interval exerciseThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic Machines, and has undergone the Journal’s usual peer review process.

Author:

Gibala Martin1

Affiliation:

1. Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada (e-mail: ).

Abstract

From a cell-signaling perspective, short-duration intense muscular work is typically associated with resistance training and linked to pathways that stimulate growth. However, brief repeated sessions of high-intensity interval exercise training (HIT) induce rapid phenotypic changes that resemble traditional endurance training. Given the oxidative phenotype that is rapidly upregulated by HIT, it is plausible that metabolic adaptations to this type of exercise could be mediated in part through signaling pathways normally associated with endurance training. A key controller of oxidative enzyme expression in skeletal muscle is peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional coactivator that serves to coordinate mitochondrial biogenesis. Most studies of acute PGC-1α regulation in humans have used very prolonged exercise interventions; however, it was recently shown that a surprisingly small dose of very intense interval exercise, equivalent to only 2 min of all-out cycling, was sufficient to increase PGC-1α mRNA during recovery. Intense interval exercise has also been shown to acutely increase the activity of signaling pathways linked to PGC-1α and mitochondrial biogenesis, including AMP-activated protein kinase (α1 and α2 subunits) and the p38 mitogen-activated protein kinase. In contrast, signaling pathways linked to muscle growth, including protein kinase B/Akt and downstream targets p70 ribosomal S6 kinase and 4E binding protein 1, are generally unchanged after acute interval exercise. Signaling through AMP-activated protein kinase and p38 mitogen-activated protein kinase to PGC-1α may therefore explain, in part, the metabolic remodeling induced by HIT, including mitochondrial biogenesis and an increased capacity for glucose and fatty acid oxidation.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3