Theoretical study of the vibrational structure of the 1(n,π*) transition in diimide: potential curves and Franck–Condon analysis

Author:

Perić M.,Buenker R. J.,Peyerimhoff S. D.

Abstract

Ab initio CI potential curves are reported for the ground and 1(n,π*) excited states of diimide for each of the six possible internal coordinates. These results are then used to obtain vibrational wavefunctions and frequencies for both states, which in turn are combined with electronic transition moment data to allow a Franck–Condon analysis of the band structure of the (dipole-forbidden) n–π* absorption system. This procedure allows one to reproduce the main features of the observed spectra of N2H2 and N2D2 and indicates that the majority of the vibrational transitions seen are vibronically induced via the antisymmetric NH stretching mode v5. The calculations are in essential agreement with the earlier experimental interpretation of the vibrational structure of this transition in terms of progressions in the symmetric bending (v2) and NN stretching (v3) frequencies, except that they indicate that the previous v2′ numbering should be altered by three units. According to this interpretation the isotope shift for the vibronic origin is 672 cm−1 compared with the corresponding calculated value of 666 cm−1. It is argued that several other weaker transitions seen experimentally arise via a different inducement mechanism, namely the torsion (v4) mode, and as such are only observed in energy regions where v5-induced transitions cannot occur.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3