Author:
Lu Bao-Rong,Bothmer Roland von
Abstract
The objectives of this study were to determine the genomic constitution and to explore the genomic variation within four Chinese endemic Elymus species, i.e., E. brevipes (Keng) Löve (2n = 4x = 28) and E. yangii B.R. Lu (2n = 4x = 28), E. anthosachnoides (Keng) Löve (2n = 4x = 28), and E. altissimus (Keng) Löve (2n = 4x = 28). Intraspecific crosses between different populations of the four Elymus species, as well as interspecific hybridizations among the four target species, and with six analyzer species containing well-known genomes, i.e., E. caninus (L.) L. (2n = 4x = 28, SH), E. sibiricus L. (2n = 4x = 28, SH), E. semicostatus (Lees ex Steud.) Melderis (2n = 4x = 28, SY), E. parviglumis (Keng) Löve (2n = 4x = 28, SY), E. tsukushiensis Honda (2n = 6x = 42, SHY), and E. himalayanus (Nevski) Tzvelev (2n = 6x = 42, SHY), were achieved through the aid of embryo rescue. Chromosome pairing behaviors were studied in the parental species and their hybrids. Numerical analysis on chromosome pairing was made on the interspecific hybrids. With one exception, each meiotic configuration at metaphase I in the hybrids involving the target taxa and the analyzer species containing the "SH" genomes fit a 2:1:1 model with x-values ranging between 0.91 and 1.00; chromosome pairing in the hybrids involving analyzer parents with the "SY" genomes match a 2:2 model, with x-values between 0.97 and 0.99. All pentaploid hybrids with a genomic formula "SSYYH," except for two crosses having unexpected low c-values, had pairing patterns fitting the 2:2:1 model with x-values varying between 0.96 and 1.00. It is concluded based on hybridization, fertility, and chromosome pairing data that (i) the four target Elymus species are strictly allotetraploid taxa, (ii) they are closely related species, all comprised of the "SY" genomes, (iii) minor genomic structural rearrangements have occurred within the four Elymus species, and (iv) meiotic pairing regulator(s) exists in some of the Elymus taxa studied.Key words: Triticeae, Elymus, interspecific hybrid, meiosis, numerical analysis, genome.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology