A regional meta-model for stock–recruitment analysis using an empirical Bayesian approach

Author:

Chen D G,Holtby L Blair

Abstract

A regional stock–recruitment meta-model is developed using a hierarchical Bayesian framework to combine information from multiple fish populations. The use of the meta-model is illustrated through analysis of the regional stock–recruitment parameters of the coho salmon (Oncorhynchus kisutch) within two large fisheries management units in southern and northern British Columbia. We construct our regional prior distribution from an analysis of all stock-recruitment data rather than by the more usual approach of assuming a prior distribution. That preliminary analysis indicated that the regional prior distribution for the two parameters of the Ricker model was bivariate normal–lognormal (NLN) with a high degree of correlation between the two Ricker parameters. Because this distribution had not been fully developed, we formulated the density function for the NLN distribution and proved some of its important properties. An empirical Bayesian approach was then used to estimate the regional distributions of the Ricker parameters and derived management parameters. Characterization of the distributional properties of productivity within management regions is a necessary step for resource managers seeking to prosecute mixed-stock fisheries while conserving population diversity.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3