Characterization by saturation studies of the in vivo binding of [3H]flunitrazepam in mouse brain

Author:

Wong Peter T.-H.

Abstract

The in vivo binding of [3H]flunitrazepam ([3H]Fln) was characterized in seven regions of the mouse brain. The binding showed saturability and linear Scatchard plots. Hill coefficients were close to unity. Data fitting to a hyperbola by least squares yielded consistent Kd values for all regions studied (0.36–0.6 pmol/mg protein). Bmax values ranged from 0.14 to 0.89 pmol/mg protein, a sixfold regional variation. The order of binding is as follows: cortex > hippocampus > midbrain = thalamus/hypothalamus > striatum ≥ cerebellum > brainstem, consistent with that obtained by in vitro binding. The in vivo receptor density and affinity are apparently lower in comparison with in vitro parameters. This is consistent with the observation that the Kd increases and Bmax decreases in vitro when the incubation temperature is increased from 0 °C. Non-specific binding has been estimated by displacement of in vivo binding by unlabelled ligand in vitro as well as by pretreatment with unlabelled ligand. The two alternative methods were compared and evaluated. It is concluded that the displacement method provides more reliable estimates of the nonspecific binding. Diazepam-sensitive mice did not differ from the control mice in the in vivo [3H]Fln binding. However, mice pretreated with diazepam 1 or 2 days before have binding reduced by 70 or 30%, respectively. The reduced binding may be explained by receptor occupancy by residual oxazepam. However, the low concentration of the residual oxazepam is an unlikely cause of the phenomenon of "acute tolerance" observed in these mice.Key words: benzodiazepines, in vivo binding, characterization, diazepam-sensitive mice, acute tolerance.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3