Reversible Inhibition of Carboxypeptidase A. IV. Inhibition of Specific Esterase Activity by Hippuric Acid and Related Species and other Amino Acid Derivatives and a Comparison with Substrate Inhibition

Author:

Bunting John W.,Myers Chester D.

Abstract

The anions of each of the following carboxylic acids exhibit uncompetitive inhibition of the hydrolysis of O-hippuryl-L-3-phenyllactic acid by bovine carboxypeptidase A at pH 7.5, 25°, ionic strength 0.2: hippuric acid, p-chloro- and p-nitrohippuric acids, hippurylglycine, carbobenzoxyglycine, phenaceturic acid, N'-(3-phenylpropanoyl)glycine, benzoxyacetic acid, 3-benzoylpropanoic acid, and O-hippuryl-D-mandelic acid. In each case, this uncompetitive inhibition is consistent with the ordered binding of substrate and inhibitor to the enzyme; i.e. the inhibitor binds to E.S but not to the free enzyme. Evidence is presented for the binding site for uncompetitive inhibitors being the same as for inhibitory ester substrate molecules. Comparison of the specificities of uncompetitive inhibitors and esters which display substrate inhibition provides evidence for a critical conformational change which controls the binding of uncompetitive inhibitors and inhibitory substrate molecules.D-Phenylalanine, D-leucine, D-p-nitrophenylalanine, glycyl-L-tyrosine, glycyl-L-phenylalanine, and glycyl-L-leucine are competitive inhibitors of the enzymic hydrolysis of O-hippuryl-L-3-phenyllactic acid, whereas the N-chloroacetyl derivatives of L-tyrosine, L-phenylalanine, and L-leucine are noncompetitive inhibitors. For the above D-amino acids, glycyl dipeptides, and N-chloroacetyl amino acids, the phenylalanine derivative in each case is a considerably stronger inhibitor than the corresponding leucine derivative. This preference is similar to that observed for the binding of peptide substrates but the reverse of that observed for ester substrates and simple mono- and dicarboxylate ion inhibitors.The peptide substrates carbobenzoxyglycylglycyl-L-phenylalanine and N-chloroacetyl-L-phenylalanine are noncompetitive inhibitors of the enzymic hydrolysis of O-hippuryl-L-3-phenyllactic acid. This clearly demonstrates the presence of different ester and peptide binding sites in this enzyme, which is consistent with conclusions from recent studies in other laboratories.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3