Oxygen and substrate deprivation on isolated rat cardiac myocytes: temporal relationship between electromechanical and biochemical consequences

Author:

Fantini Elisabeth,Athias Pierre,Courtois Martine,Khatami Shorheh,Grynberg Alain,Chevalier Annick

Abstract

The effects of hypoxia and reoxygenation on action potentials (AP), contractions, and certain biochemical parameters were studied in isolated rat ventricular myocytes in monolayer culture in the presence and absence of glucose. Substrate deprivation alone had no influence on the basal properties. In the presence of glucose, a 4-h hypoxic treatment caused only a moderate decrease in AP amplitude and rate. In substrate-free conditions, hypoxia induced a gradual decline in plateau potential level and in AP duration and rate, followed by rhythm abnormalities and a failure of the electromechanical coupling. Spontaneous AP generation then ceased, and the resting potential decreased with increased duration of hypoxia. These alterations were associated with a decrease in ATP content, an increase in the lactate production, and a leakage of about 50% of the total cellular lactate dehydrogenase (LDH). Cells reoxygenated after 150 min hypoxia recovered near-normal function, while the ATP depletion ceased and the rate of lactate and LDH loss was diminished. Conversely, cells reoxygenated after 4 h hypoxia exhibited a further decrease of the residual resting polarization and no change in the decline of intracellular ATP and in the efflux of cytosolic lactate and LDH. The results of this study indicate that (1) the sequence and the extent of functional alterations are dependent on the duration of hypoxia in the absence of exogenous substrate and (2) ATP depletion and the amount of lactate and LDH released during hypoxia are related to the shift from reversibly to irreversibly damaged cells.Key words: cultured rat cardiomyocytes, electromechanical properties, hypoxia–reoxygenation, glucose deprivation, enzyme release.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3