Signal exchange between higher plants and rust fungi

Author:

Heath Michèle C.

Abstract

The rust fungi appear to have evolved a sophisticated complex of molecular interactions with their host plants that govern both plant resistance and susceptibility. It is suggested that many of these interactions relate to the maintenance and effective exploitation of biotrophy, and that host specificity and the obligacy of parasitism are a consequence of the resulting interactive molecular control of plant and fungal activities. For the dikaryon, plant signals are required for locating stomata and the formation of infection structures, haustorial mother cells, and haustoria. Host susceptibility to both the monokaryon and the dikaryon appears to involve the suppression of defensive secretory processes, the induction of cellular alterations in invaded cells, and, for the dikaryon at least, changes in nutrient translocation. Parasite-specific resistance involves cultivar-specific fungal signals (elicitors) of defense responses such as cell death and callose deposition. The nature of, and evidence for, the signals involved in these interactions are reviewed. Key words: biotrophy, elicitors, rust fungi, signal exchange.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3