A geothermally influenced wetland containing unconsolidated geochemical sediments

Author:

Channing A,Edwards D,Sturtevant S

Abstract

Hot spring waters flowing from Porkchop Geyser, Norris Geyser Basin, Yellowstone National Park, USA. enter a shallow wetland basin and precipitate opal-A silica particulate. Particulate formation by chemical (rather than biochemical) and colloidal mechanisms is suggested by floc- and shard-like particle morphologies comprising opal-A silica nanospheres and microspheres of colloidal dimensions and precipitation from waters with opaque milky-blue colouration, indicative of aqueous silica-sol conditions. Sediment accumulates in the wetland at a rate of ca. 20–25 mm/year, is unconsolidated, and massive to diffusely bedded to laminated. Post depositional features include soft sediment deformation and scouring, and in drying conditions, relatively deep desiccation. Establishment of geochemically dominated wetland sedimentation is favoured where alkali-chloride hot spring fluids of circum neutral to basic pH and high silica concentration discharge to and cool (to < ca. 35 °C) within topographic depressions that receive only small volumes of non-hot spring water. Local wetland vegetation, which is composed of hydrophytes, halophytes, and alkali-tolerant species more typical of coastal wetlands, colonizes the soft wetland substrate and may be relatively quickly buried by rapid sediment accumulation. Prior to the evolution of the diatom silica-sink, geothermal wetlands containing geochemically precipitated silica sediments may have been much more common and widespread. Rhizoliths, chert nodules with organic cores, scour fabrics, soft sediment deformation, desiccation cracks, and massive to diffuse bedding preserved in Palaeozoic geothermal environments may all be evidence of ancient unconsolidated geochemical sediments and geothermal wetland conditions.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3