On the effect of gravitational and hydrodynamic forces on particle motion in a quiescent fluid at high particle Reynolds numbers

Author:

Rostami M,Ardeshir A,Ahmadi G,Thomas P J

Abstract

Trajectories of 5 and 10 mm metallic and plastic particles in a quiescent liquid during their sedimentation toward a plate were studied using experimental and numerical means, and the influence of gravity, drag, added mass, and history forces were evaluated. Variations of particle diameter and density allowed measurements at Reynolds numbers, based on the impact velocity, in the range of 1 000 to 13 000. A computer model was developed and the Lagrangian equation of particle motion was solved. The results showed that the combination of gravity, drag, and added mass forces are important for the simulation of the motion of small particles for the duration of their flight from the starting point to the wall impact, in the range of particle Reynolds numbers between 1000 and 5000. Comparison of the simulation results with the data showed that the predicted trajectories underestimated the experimental observations by about 1% to 4.3%. When the history force was included in the governing equation, however, excellent agreement between the measured and predicted particle trajectory was obtained. Experimental results for the motion of large particles showed oscillations in the time history of particle velocity when the particle Reynolds number was in the range of 3 000 to 13 000. Repeating the experiment, and averaging the data of a large number of experiments, yielded averaged curves for the particle velocity that did not show oscillatory values. In this case, good agreement between numerical and experimental data was observed. The study also shows that at high particle Reynolds numbers, the effect of the history force becomes negligibly small.PACS No.: 47.55kf

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of resistance forces in Galileo’s experiments;European Journal of Physics;2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3