Author:
Banville Marcel,Kunz P. D.
Abstract
The three-body wave function for particles of equal mass is expanded in a systematic way by making use of a hyperspherical coordinate system. Apart from the center-of-mass coordinates, three of the variables are the usual Euler angles describing the orientation of the plane defined by the three particles. The other three variables, which describe the shape of the triangle, are represented in terms of a radial coordinate and two angular coordinates. The kinetic energy for these last three coordinates is separable and allows one to expand the three-body wave function in a complete set of orthogonal functions based upon the angular variables. The particular symmetry of the internal part of the wave function under permutations of the three particles is easily represented in terms of the set of functions for one of the angular variables. By choosing a particular set of radial functions one can then obtain the upper limit on the binding energy for the three-body system through the Rayleigh–Ritz variational procedure. The advantage of this particular coordinate system is that all but a few of the variational parameters occur linearly in the wave function, and the minimum energy can be obtained by diagonalizing a small number of the energy matrices. The method is applied to find the lower limit to a standard spin-independent potential of Gaussian shape.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献