Characterization of pH3DZ1 — An RNA-cleaving deoxyribozyme with optimal activity at pH 3

Author:

Ali Md. Monsur,Kandadai Srinivas A,Li Yingfu

Abstract

We previously described a cis-acting RNA-cleaving deoxyribozyme known as pH3DZ1 that exhibits optimal catalytic activity at pH 3.0 (Zhongjie Liu, Shirley H. Mei, John D. Brennan, and Yingfu Li. J. Am. Chem. Soc. 125, 7539 (2003)). This DNA catalyst was made of a 99-nucleotide (nt) catalytic domain covalently linked to a 23-nt DNA–RNA chimeric substrate containing a single ribonucleotide as the cleavage site. In the present work, we conducted an extensive sequence examination of this deoxyribozyme via nucleotide truncation and reselection experiments, with a goal to minimize its size and identify the nucleotides that are crucial to its catalytic function. A trans-acting deoxyribozyme that can process an external substrate was also successfully designed. Stretches of 30 and 17 nucleotides from the 5′ and 3′ ends of the trans catalyst, respectively, were found to be completely dispensable; in contrast, few nucleotides could be deleted internally without producing a detrimental effect. The reselection experiment led to the discovery of 7 and 5 absolutely conserved nucleotides located at the 5′ and 3′ ends of the minimized catalyst, respectively, separated by a 31-nt element in which 14 highly conserved nucleotides were scattered among 17 variable nucleotides. The shortened deoxyribozyme and the original catalyst showed a similar pH profile with the optimal activity at pH 3; however, the minimized deoxyribozyme still exhibited strong catalytic activity at pH 2.5, while the full-length catalyst was barely active at this pH. Finally, it was found that this deoxyribozyme generated two cleavage fragments, one with 2′,3′-cyclic phosphate and the other with 5′-OH.Key words: DNA, deoxyribozyme, RNA cleavage, in vitro selection, catalysis.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3