Physiological controls of the carbon balance of boreal forest ecosystems

Author:

Bonan Gordon B.

Abstract

Mature boreal forest ecosystems in interior Alaska are large annual carbon sinks. Annual tree production is the largest carbon flux. A model of that combined energy, heat, and moisture exchange, tree photosynthesis and respiration, decomposition, and nitrogen mineralization was used to examine the physiological controls of the carbon balance of boreal forests. Simulated annual tree production, forest floor decomposition, nitrogen mineralization, and soil respiration were not significantly different from observed data for nine black spruce (Piceamariana (Mill.) B.S.P.), five white spruce (Piceaglauca (Moench) Voss), two quaking aspen (Populustremuloides Michx.), two paper birch (Betulapapyrifera Marsh.), and three balsam poplar (Populusbalsamifera L.) forests near Fairbanks, Alaska. The model also reproduced features of observed fertilization, soil warming, and litter transplant experiments. Net carbon uptake during tree growth was the largest simulated carbon flux, and these analyses suggest that differences in the carbon balance of these forests can be explained, in part, through key physiological parameters that link photosynthesis, carbon allocation, nitrogen requirements, litter quality, and foliage longevity. The simulations suggest that the greatest source of variation in these parameters occurs between coniferous and deciduous life-forms not among species. Simulation experiments showed that the coniferous and deciduous physiological parameters maximized annual tree production for coniferous and deciduous forests, respectively, thereby providing a physiological basis for the evolution of the different life history characteristics of deciduous and coniferous species. The strong coherency among physiological parameters allows them to be estimated from easily obtained data and may provide a basis to examine carbon fluxes over large regions.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The evolution, complexity and diversity of models of long‐term forest dynamics;Journal of Ecology;2022-09-08

2. Index;Climate Change and Terrestrial Ecosystem Modeling;2019-02-28

3. References;Climate Change and Terrestrial Ecosystem Modeling;2019-02-28

4. Appendices;Climate Change and Terrestrial Ecosystem Modeling;2019-02-28

5. Canopy Chemistry;Climate Change and Terrestrial Ecosystem Modeling;2019-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3