Affiliation:
1. Institut de Química Computacional and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain.
2. Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
Abstract
We report here the chemical bonding and aromaticity patterns in metalloporphyrins, which were obtained with density functional theory (DFT) calculations at the OPBE/TZP level. This level of theory was previously shown to be very accurate for determining spin-state splittings [J. Chem. Theory Comput. 2008, 4, 2057] of transition-metal complexes. We considered metalloporphyrins along the first-row transition metals (Sc–Zn) extended with alkaline-earth metals (Mg, Ca) and several second-row transition metals (Ru, Pd, Ag, Cd). An energy decomposition analysis was performed to study the metal–ligand interactions, which showed that almost all complexes are significantly stabilized through (covalent) orbital interactions. The only exception is with calcium as the central metal, which interacts with the porphyrin mainly through electrostatic interactions. Furthermore, we studied aromaticity patterns for these complexes by looking at a number of (structural and electronic) aromaticity descriptors, for both the inner-ring and outer-ring of the porphyrin and of the pyrroles. The inner-ring (N16) aromaticity is shown to be unaffected by metal complexation, while the outer-ring (N20) and the pyrrole (N5) aromaticities are found to increase significantly in the metal coordinated porphyrins.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献