Author:
Tasker I.R.,O'Hare P. A. G.,lewis Brett M.,Johnson G. K.,Cordfunke E. H. P.
Abstract
Three precise calorimetric methods, viz., low-temperature adiabatic, high-temperature drop, and solution-reaction, have been used to determine as a function of temperature the key chemical thermodynamic properties of a pure sample of schoepite, UO2(OH)2•H2O. The following results have been obtained at the standard reference temperature T = 298.15 K: standard molar enthalpy of formation [Formula: see text] molar heat capacity [Formula: see text] and the standard molar entropy [Formula: see text] The molar enthalpy increments relative to 298.15 K and the molar heat capacity are given by the polynomials: [Formula: see text] and [Formula: see text], where 298.15 K < T < 400 K. The present result for [Formula: see text] at 298.15 K has been combined with three other closely-agreeing values from the literature to give a recommended weighted mean [Formula: see text] from which is calculated the standard Gibbs energy of formation [Formula: see text] at 298.15 K. Complete thermodynamic properties of schoepite are tabulated from 298.15 to 423.15 K.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献