Affiliation:
1. Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
Abstract
In molecular optoelectronics, high-quality contacts at electrode|organics interfaces are crucial for charge carriers to efficiently flow through and therefore play a critical role on device performance. Electrode surface morphology, adhesibility, wettability, and work function are thus many parameters that must be accurately controlled, which is achievable using self-assembling monolayer (SAM) surface chemistry. Herein, we employ this technique to alter the electronic and surface energy-related properties of indium–tin oxide (ITO). In comparison to unmodified ITO, the newly introduced SAM-derivatized surface exhibits limited wettability and considerably higher work function (ΔΦ = ~1.2 eV). Several applications are proposed for this organic coating, notably at the anode of organic light-emitting diode (OLED) devices for decreasing the hole injection barrier or as an atmospherically stable protective layer in the coatings industry.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献