Resistance Training: Cortical, Spinal, and Motor Unit Adaptations

Author:

Griffin Lisa,Cafarelli Enzo

Abstract

During the first few weeks of isometric resistance training there is an increase in maximal muscle force output that cannot be accounted for by muscle hypertrophy. Early on, researchers postulated the existence of neural adaptations to training primarily through the use of surface electromyographic recordings. More recent evidence also suggests that increased excitation may occur at the cortical levels following short-term resistance training. Alterations in synergistic activation and reductions in antagonist activation are neural factors that have been identified as changing during the early stages of resistance training which could contribute to maximal force generation. Neural adaptations that occur during the ramp-up phase of isometric contraction include decreases in motor unit recruitment thresholds, increased motor unit discharge rates, and increases in double discharges. An increase in the maximal rate of force development also occurs during the early stages of resistance training, but whether the neural mechanisms associated with the increase in the rate of rise are also associated with the increase in maximal force has not been elucidated. More work is needed to examine the integration of changes in cortical and spinal excitability with single motor unit firing patterns during this simple form of exercise before we can extend our understanding to different types of training. Key words: strength training, neural adaptation, H-reflex, maximal voluntary contraction, cortical excitability

Publisher

Canadian Science Publishing

Subject

Orthopedics and Sports Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3