Aluminum induces oxidative damage in Saccharomyces cerevisiae

Author:

Chen Ranran1,Zhu Qian1,Fang Zhijia1,Huang Zhiwei12,Sun Jing3,Peng Min3,Shi Ping4

Affiliation:

1. Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, People’s Republic of China.

2. Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China.

3. Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xiguan Avenue 59, Xining, Qinghai Province 810001, People’s Republic of China.

4. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China.

Abstract

The mechanism of aluminum toxicity was studied in the model cells of Saccharomyces cerevisiae. Cell growth of yeast was inhibited by aluminum. The spot assay showed that the mechanism of aluminum detoxification in yeast cells was different from that of heavy metal cadmium. After treatment with aluminum, intracellular levels of reactive oxygen species, protein carbonyl, and thiobarbituric acid reactive substances were dramatically increased. Meanwhile, the percentage of aluminum-treated cells permeable to propidium iodide was augmented significantly. These data demonstrated that aluminum toxicity was attributed to oxidative stress in yeast, and it induced oxidative damage by causing lipid peroxidation, injuring cell membrane integrity. Moreover, aluminum triggered the antioxidant defense system in the cells. Glutathione levels were found to be decreased, while activities of superoxide dismutase and catalase were increased after treatment with aluminum. Additionally, an oxidative-stress-related mutation sensitivity assay showed that aluminum-induced yeast oxidative stress was closely related to glutathione. These data demonstrated that the oxidative damage caused by aluminum was different from that of hydrogen peroxide, in yeast. Aluminum could cause DNA damage, and aluminum toxicity was associated with sulfhydryl groups, such as glutathione, while it was independent of YAP1.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3