Affiliation:
1. College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
2. College of Resource and Environment, Anhui Science and Technology University, Chuzhou, Anhui 233100, China.
Abstract
To understand the diversities of diazotrophs and denitrifiers in red paddy soil under long-term fertilization conditions, nifH, nirK, and nosZ libraries were constructed by PCR–RFLP. nirK gene diversity proved to be lower than that of nosZ and nifH, and nirK and nosZ genes were more sensitive to different fertilization treatments than the nifH gene was. The 3 libraries were dominated by diverse microbes, including the Alpha, Beta, Gamma, and Delta subclasses of the Proteobacteria. Long-term addition of urea with straw mulch and azophoska increased the abundance of nonsymbiotic diazotrophs, which indicated that nonsymbiotic diazotrophs were responsible for the majority of the nitrogen-fixing ability in paddy soil. In addition, a potential link between nifH and nosZ was found due to the existence of nitrogen fixers, such as Bradyrhizobium and Ralstonia, in the nosZ library. The main chemical factors affecting the 3 genes were identified: pH was the most important factor of the nifH community; the nirK gene was more affected by pH and organic matter; available potassium and the carbon-to-nitrogen ratio significantly influenced the community structure of the nosZ gene.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献