Author:
Kuo-Chen Chou,Forsen Sture
Abstract
Four rules to deal with first-order or pseudo-first-order steady-state reaction systems are presented.By means of Rule 1, we can immediately write down the apparent rate constants of consecutive reaction systems. This rule is actually the same as the "Rule of Thumb" proposed by Gilbert, but here its mathematical proof is given.Rule 2 and Rule 3 may serve to derive the apparent rate constants of various complex reaction systems. In comparison with the general algebraic methods, these two rules can simplify laborious calculations that would otherwise be tedious and liable to errors.Rule 4 presents a new schematic method to calculate the concentrations of the reactants. The new method, in simplifying the calculation of complex problems, is extraordinarily efficacious in comparison with the existing schematic methods. For complex mechanisms which are too complicated to be treated with the general manual calculation method, the practical calculations show that we can easily write down the desired results by means of Rule 4.In addition, Rules 2, 3, and 4 include corresponding check formulae, by use of which we can avoid missing subgraphs to be counted. Their advantages will be manifested particularly in dealing with complex mechanisms.The mathematical proofs of these rules are given in the Appendices.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献