Is acyl migration to the aglycon avoidable in 2-acyl assisted glycosylation reactions?

Author:

Bérces Attila,Whitfield Dennis M,Nukada Tomoo,do Santos Z. Iwona,Obuchowska Agnes,Krepinsky Jiri J

Abstract

This report unequivocally separates orthoester formation from acyl transfer for the first time and indicates possible routes to eliminate 2-O-acyl transfer during glycosylation reactions. Experimental evidence is shown that acyl transfer from 2-O-acyl-3,4,6-tri-O-benzyl-D-galactopyranose-derived glycosyl donors decreases in the order formyl > acetyl > pivaloyl. The 2-O-benzoyl derivatives are more variable, in some cases transferring easily, and in others not at all. Density functional theory (DFT) calculations of the structure and energetics of dioxolenium ion and related intermediates suggest that a proton transfer pathway from the nucleophile to O-2 provides an explanation for the observed trends. These DFT calculations of the proton transfer pathway support a mechanism in which a relay molecule is involved. Further DFT calculations used a constraint based on linear combinations of six bond lengths to establish the sequence of bond breaking and bond forming. The calculated anomeric carbon to former carbonyl oxygen bond that breaks during acyl transfer is the longest in the formyl case and shortest in those that exhibit little or no acyl transfer. Rotation about the aromatic to carbonyl Ph—C(=O) bond is different from the alkyl series. Analysis of this proposed TS led to the postulate that 2,6-substitution may hinder rotation even more. Thus, the 2,6-dimethylbenzoyl analogue was synthesized and it does not transfer directly or by rearrangement of its readily formed orthoester. DFT calculations suggested that 2,6-dimethoxybenzoyl should also not transfer easily. Experimentally, this proved to be the case and this new 2-O-acyl protecting group cleaves at 50 °C with a 1 mol/L solution of LiOH in methanol. Thus, a calculated transition state has led to a prototype of a protecting group that solves a major problem in oligosaccharide synthesis.Key words: glycosylation, carbohydrates, quantum chemistry, reaction mechanism, neighboring-group effects.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3