Structural features of the carbon–sulfur chemical bond: a semi-experimental perspective

Author:

Penocchio Emanuele11,Mendolicchio Marco11,Tasinato Nicola11,Barone Vincenzo11

Affiliation:

1. Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa PI, Italy.

Abstract

In this work, semi-experimental (SE) and theoretical equilibrium geometries of 10 sulfur-containing organic molecules, as well as 4 oxygenated ones, are determined by means of a computational protocol based on density functional theory. The results collected in the present paper further enhance our online database of accurate SE equilibrium molecular geometries, adding 13 new molecules containing up to 8 atoms, for 12 of which, to the best of our knowledge, the first SE equilibrium structure is reported. We focus in particular on sulfur-containing compounds, aiming both to provide new accurate data on some rather important chemical moieties, only marginally represented in the literature of the field, and to examine the structural features of carbon–sulfur bonds in the light of the previously presented linear regression approach. The structural changes issuing from substitution of oxygen by sulfur are discussed to get deeper insights on how modifications in electronic structure and nuclear potential can affect equilibrium geometries. With respect to our previous work, we perform nonlinear constrained optimizations of equilibrium SE structures, using a new general and user-friendly software under development in our group with updated definitions of useful statistical indicators.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Reference144 articles.

1. Reinventing Chemistry

2. Rational drug design

3. Structure-based drug design: progress, results and challenges

4. Rational Drug Design

5. Shaw, A. M.Astrochemistry: From Astronomy to Astrobiology; John Wiley & Sons: New York, NY, 2006.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3