Theoretical investigation of methoxide ion reaction on the 7-methyl-4,6-dinitrobenzofuroxan

Author:

Boughdiri Mohamed Ali1,Boubaker Taoufik2,Tangour Bahoueddine1

Affiliation:

1. Université de Tunis El Manar, Research Unit in Fundamental Sciences and Didactics, Team of Theoretical Chemistry and Reactivity, 2096, El Manar II, Tunisia.

2. Université de Monastir, Laboratoire de Chimie des Hétérocycles, Produits Naturels et Réactivité, Avenue de l’environnement, 5019, Monastir, Tunisia.

Abstract

Reaction of the methoxide ion on the 7-methyl-4,6-dinitrobenzofuroxan (DNBF) 1 has been studied theoretically by means of DFT/B3LYP technique to interpret the kinetic–thermodynamic competition between the three possible compounds that are carbanion DNBF 4 and the two complexed forms (2, 3) of the methoxide group in positions 5 and 7, respectively. Optimized geometry, nbo atomic charge distribution, thermodynamic/kinetic parameters (ΔrT, ΔrT, ΔrT, ΔH*, ΔS*, and ΔG*) and IRC path have been calculated for possible products and their transitional states using water as solvent. All obtained ΔrT are negative, ranging from −19.16 to −42.87 kcal mol−1 (1 cal = 4.184 J), indicating the possible observation of all products, but the experimenters only detected the anionic form DNBF. Fukui indices, which were calculated by means of NBO atomic charge distribution, confirm the electrophilicity of the sites C5 and C7. Transition states barriers, ΔG*, are 14.97, 15.16, and 21.94 kcal mol−1 for the three possible products 2, 3, and 4, respectively, in water. As expected, the most stable compound is carbanion, but it also exhibits the highest activation barrier. If this situation formally engenders a double kinetic–thermodynamic competition, the very weak activation energy of the two complexes in C5 and C7 makes improbable the simultaneous detection of the three expected compounds.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3