Base sequence specificity of counterion binding to DNA: what can MD simulations tell us?

Author:

Atzori Alessio1,Liggi Sonia1,Laaksonen Aatto123,Porcu Massimiliano12,Lyubartsev Alexander P.2,Saba Giuseppe1,Mocci Francesca123

Affiliation:

1. Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato (CA), Italy.

2. Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S-10691 Stockholm, Sweden.

3. Science for Life Laboratory, 171 21 Solna, Sweden.

Abstract

Nucleic acids are highly charged biopolymers whose secondary structure is strongly dependent on electrostatic interactions. Solvent molecules and ions are also believed to play an important role in mediating and directing both sequence recognition and interactions with other molecules, such as proteins and a variety of ligands. Therefore, to fully understand the biological functions of DNA, it is necessary to understand the interactions with the surrounding counterions. It is well known that monovalent counterions can bind to the minor groove of DNA with consecutive sequences of four, or more, adenine and thymine (A-tracts) with relatively long residence times. However, much less is known about their binding to the backbone and to the major groove. In this work, we used molecular dynamics simulations to both investigate the interactions between the backbone and major groove of DNA and one of its physiological counterions (Na+) and evaluate the relationship between these interactions and the nucleotide sequence. Three dodecamers, namely CGAAAATTTTCG, CGCTCTAGAGCG, and CGCGAATTCGCG, were simulated using the Toukan–Rahman flexible SPC water model and Smith and Dang parameters for Na+, revealing a significant sequence dependence on the ion binding to both backbone and major groove. In the absence of experimental data on the atomistic details of the studied interactions, the reliability of the results was evaluated performing the simulations with additional sets of potential parameters for ions and solvent, namely the Ȧqvist or the Joung and Cheatham ion parameters and the TIP3P water model. This allowed us to evaluate the results by verifying which features are preserved independently from the parameters adopted.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3