Affiliation:
1. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Jiangsu, PR China.
2. Institute for Computation in Molecular and Materials Science and Department of Chemistry, Nanjing University of Science and Technology, Jiangsu, PR China.
Abstract
A new powerful zero-hydrogen energetic compound DNDOBTT (2,7-dinitro-4N,9N-dioxide-bis[1,2,4]-triazolo)[1,5-b:1′,5′e][1,2,4,5] tetrazine) was produced by a new design concept of achieving a balance among the parent compound, nitro groups, and N-oxides. Its structure and properties was studied by the density functional theory. The breaking of N–N bond in the tetrazine ring is an initial decomposition step of DNDOBTT, and the energy barrier was predicted to be 175 kJ·mol−1. DNDOBTT has comparable detonation performance with some CHNO energetic compounds, including the most powerful ONC (octanitrocubane), whereas its sensitivity and thermal stability are obviously lower and better than those of ONC, respectively, indicating that DNDOBTT has both the high energy and reduced sensitivity and may be a valuable candidate for experiments. Therefore, a new novel energetic material DNDOBTT with good overall performance has been obtained successfully by the new design concept, and it may be applied to design and develop other novel improved zero-hydrogen energetic materials.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献