New concept for the design of zero-hydrogen energetic materials with high energy and low sensitivity: achieving a good balance among parent compounds, nitro groups, and N-oxides

Author:

Wu Qiong1,Tan Linghua1,Hang Zusheng1,Zhu Weihua2

Affiliation:

1. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Jiangsu, PR China.

2. Institute for Computation in Molecular and Materials Science and Department of Chemistry, Nanjing University of Science and Technology, Jiangsu, PR China.

Abstract

A new powerful zero-hydrogen energetic compound DNDOBTT (2,7-dinitro-4N,9N-dioxide-bis[1,2,4]-triazolo)[1,5-b:1′,5′e][1,2,4,5] tetrazine) was produced by a new design concept of achieving a balance among the parent compound, nitro groups, and N-oxides. Its structure and properties was studied by the density functional theory. The breaking of N–N bond in the tetrazine ring is an initial decomposition step of DNDOBTT, and the energy barrier was predicted to be 175 kJ·mol−1. DNDOBTT has comparable detonation performance with some CHNO energetic compounds, including the most powerful ONC (octanitrocubane), whereas its sensitivity and thermal stability are obviously lower and better than those of ONC, respectively, indicating that DNDOBTT has both the high energy and reduced sensitivity and may be a valuable candidate for experiments. Therefore, a new novel energetic material DNDOBTT with good overall performance has been obtained successfully by the new design concept, and it may be applied to design and develop other novel improved zero-hydrogen energetic materials.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3