Molecular dynamics studies of a β-sheet blocking peptide with the full-length amyloid beta peptide of Alzheimer’s disease

Author:

Amini Zohreh12,Fatemi Mohammad Hossein1,Rauk Arvi2

Affiliation:

1. Chemometrics Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar, Mazandaran 47416-95447, Iran.

2. Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada.

Abstract

The region encompassing residues 13–23 of the amyloid beta peptide (Aβ(13–23)) of Alzheimer’s disease is the self-recognition site that initiates toxic oligomerization and fibrillization. A number of pseudopeptides have been designed to bind to Aβ(13–23) and been computationally shown to do so with high affinity. More interactions are available in full-length Aβ than are available in the shorter peptide. We describe herein a study by molecular dynamics (MD) of nine distinct complexes formed by one such pseudopeptide, SGA1, with full-length beta amyloid, Aβ(1–42). The relative stabilities of the Aβ–SGA1 complexes were estimated by a combination of MD and ab initio methods. The most stable complex, designated AB1, was found to be one in which SGA1 is bound to the self-recognition site of Aβ(1–42) in an antiparallel β-sheet fashion. Another complex, designated AB3, also involved SGA1 binding to the self-recognition region of Aβ(1–42), albeit with lower affinity. In both AB1 and AB3, SGA1 formed antiparallel β-sheets but to opposite edges of Aβ. A complex, AB4, with similar stability to AB3, was found with a parallel β-sheet in the self-recognition site. A fourth complex, AB7, also with similar stability, formed a parallel β-sheet in the hydrophobic central region of Aβ. In all cases, complexation of SGA1 induced extensive β-sheet structure in Aβ(1–42).

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3