Affiliation:
1. Chemometrics Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar, Mazandaran 47416-95447, Iran.
2. Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada.
Abstract
The region encompassing residues 13–23 of the amyloid beta peptide (Aβ(13–23)) of Alzheimer’s disease is the self-recognition site that initiates toxic oligomerization and fibrillization. A number of pseudopeptides have been designed to bind to Aβ(13–23) and been computationally shown to do so with high affinity. More interactions are available in full-length Aβ than are available in the shorter peptide. We describe herein a study by molecular dynamics (MD) of nine distinct complexes formed by one such pseudopeptide, SGA1, with full-length beta amyloid, Aβ(1–42). The relative stabilities of the Aβ–SGA1 complexes were estimated by a combination of MD and ab initio methods. The most stable complex, designated AB1, was found to be one in which SGA1 is bound to the self-recognition site of Aβ(1–42) in an antiparallel β-sheet fashion. Another complex, designated AB3, also involved SGA1 binding to the self-recognition region of Aβ(1–42), albeit with lower affinity. In both AB1 and AB3, SGA1 formed antiparallel β-sheets but to opposite edges of Aβ. A complex, AB4, with similar stability to AB3, was found with a parallel β-sheet in the self-recognition site. A fourth complex, AB7, also with similar stability, formed a parallel β-sheet in the hydrophobic central region of Aβ. In all cases, complexation of SGA1 induced extensive β-sheet structure in Aβ(1–42).
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献