Affiliation:
1. Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran.
2. Environmental Heath Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
Abstract
The equilibrium structures, interaction energies, and bonding properties of ternary XHY···NCH···HM complexes are studied by ab initio calculations, where X = F, Cl, Br, Y = S, Se, and M = Li, Na, BeH, MgH. The ab initio calculations are carried out at the MP2/aug-cc-pVTZ level. The results indicate that all optimized Y···N and H···H binding distances in the ternary complexes are smaller than the corresponding values in the binary systems. The calculated cooperative energies (Ecoop) are between −0.20 kcal/mol in BrHS···NCH···HBeH and −3.29 kcal/mol in FHSe···NCH···HNa. For a given Y and M, the estimated Ecoop values increase as X = F > Cl > Br. In addition, the selenium-bonded complexes exibit larger Ecoop values than those of the sulfur-bonded counterparts. The cooperativity between Y···N and H···H interactions is further analyzed by quantum theory of atoms in molecules and natural bond orbital methods. Cooperative effects make an increase in the J(Y–N) and J(H–H) spin–spin coupling constants of the ternary complexes with respect to the binary systems.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Computational Methods to Study Chalcogen Bonds;Chalcogen Chemistry: Fundamentals and Applications;2023-02-15
2. Indirect spin-spin coupling constants across noncovalent bonds;Annual Reports on NMR Spectroscopy;2021