The thermal and photochemical decompositions of succinic anhydride and 2,3-dimethyl succinic anhydride in the gas phase

Author:

Yamamoto S.,Back R. A.

Abstract

The absorption spectrum of succinic anhydride shows a broad maximum near 220 nm, attributed to the lowest π*–n transition. Photolysis in this region (220–270 nm) gives CO2, CO, and C2H4, but not in the equimolar quantities expected from a simple molecular dissociation. Production of CO also shows a time dependence, increasing with time, and a free-radical mechanism is tentatively suggested to account for this. The thermal decomposition of succinic anhydride at 625–775 K yields the same products, but is more complex, with larger deviations from the simple stoichiometry, and product formation non-linear with time and pressure. At short times, production of CO, the most abundant product, is described by first-order Arrhenius parameters of log A (s−1) = 11.6 and E = 53 kcal/mol, apparently independent of surface.The photolysis of the cis and trans isomers of 2,3-dimethylsuccinic anhydride at 250 and 230 nm is simpler than that of succinic anhydride, giving equimolar CO and CO2, but with butene-2 still falling short of a stoichiometric yield by from 10 to 40%. Both cis- and trans-butene-2 were produced, with the latter always in excess and with no retention of the configuration of the original anhydride. The thermal decomposition of 2,3-dimethylsuccinic anhydride is more complex than the photolysis, with much less butene-2 produced (again with no retention of cis–trans configuration) and methane an important product. Activation energies for CO formation were about 48 and 45 kcal/mol and log A (s−1) was 10.4 and 9.5 for the cis and trans isomers, respectively.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3