A comparative study of mycorrhizas in several genera of Pyroleae (Ericaceae) from western Canada

Author:

Massicotte H. B.12,Melville L. H.12,Tackaberry L. E.12,Peterson R. L.12

Affiliation:

1. Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada.

2. Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.

Abstract

Genera in the tribe Pyroleae (subfamily Monotropoideae, family Ericaceae) occur as understory plants in northern temperate zones where some form major components of ecosystems. Most have been poorly studied in terms of their association with symbiotic fungi. In this study, colonization patterns of mycorrhizal roots of five members of the Pyroleae ( Pyrola asarifolia Michx., Pyrola chlorantha Sw., Orthilia secunda (L.) House, Chimaphila umbellata (L.) W. Bart., Moneses uniflora (L.) Gray) were explored. Root samples were processed for light, fluorescence, and laser scanning confocal, scanning electron, and transmission electron microscopy, as well as for immunocytochemistry. Roots of all species had enlarged epidermal cells containing hyphal complexes, Hartig nets confined to the epidermis, and mantles. Epidermal cells were penetrated by hyphae originating from the Hartig net at more than one site either along the inner tangential wall or radial walls. The outer tangential wall of epidermal cells of all species, except M. uniflora, was thicker than radial and inner tangential walls and consisted of two layers, the outer containing nonesterified pectins that were labeled with JIM 5 antibodies. Radial walls and inner tangential walls did not label, but cortical cell walls did. Intracellular hyphal complexes developed initially around centrally positioned, enlarged epidermal cell nuclei and, through branching, occupied most of the cell volume. Senescence and degradation of the complexes followed. The fungal species in these symbiotic associations may be important functionally in nutrient exchange, as well as in contributing to broader linkages with other hosts in these plant communities.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3