Author:
Elmorsi Mostafa,Kianoush M Reza,Tso W K
Abstract
A new finite element model for reinforced concrete beam-column joints is proposed. The model considers the effects of bond-slip and shear deformations in the joint panel region. The problems associated with modeling bond-slip of anchored reinforcing bars are discussed. The proposed bond-slip model is examined at the element level by comparing its predictions with other analytical and experimental results. The ability of the model to simulate bond deterioration and eventual pullout of anchored reinforcing bars under severe cyclic excitation is demonstrated. This model is incorporated into the global beam-column joint element. Further comparisons are made between the predictions of the proposed beam-column joint model and other analytical and experimental results under reversed cyclic loading to show the validity of the model to describe the bond-slip behavior of the joints.Key words: bond, bond-slip, finite element, beam-column, reinforced concrete, cyclic.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献