Depositional environments along a carbonate ramp to slope transition in the Silurian of Washington Land, North Greenland

Author:

Hurst John M.,Surlyk Finn

Abstract

During the earliest Silurian, subsidence and tilting of a relatively flat carbonate platform produced a homoclinal carbonate ramp transitional to the slope of a deep-water basin. Further subsidence, associated with a flexure, differentiated the slope from the carbonate ramp. Subsequently, a linear reef tract developed along part of the flexure, producing a steep reef-scarp slope at the outer homoclinal carbonate ramp margin and accentuating the initial basin slope. Isolated reefs also developed on the slope. The reef tract, which influenced slope depositional environments considerably, marked the transition from the shallow homoclinal carbonate ramp facies to the deeper slope environments. Background slope sedimentation was primarily terrigenous mudstone deposited out of suspension and by very dilute muddy turbidity flows. Superimposed were calcarenites and conglomerates, derived from the carbonate ramp margin and reefs, deposited by low- to high-density turbidity flows, debris flows, and possibly grain and liquefied flows. Sedimentation patterns along the incipient slope reflect both shallow carbonate ramp and deep basinal influences. With continued subsidence and differentiation of slope and ramp, slumping of carbonate blocks occurred at the ramp margin. Disorganized talus wedges developed as circular fringes around reefs on the slope, and a fine-grained talus wedge developed along the base of the main precipitous reef scarp at the ramp margin. A large channel cut down and across the slope and eventually became choked with ramp-margin reef and top-of-slope material. Finally, abrupt subsidence, which generated an olistostrome containing a minimum of [Formula: see text] of debris, drowned all reefs and the slope became essentially starved of resedimented carbonate debris.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3