Phosphatidylethanolamine biosynthesis in isolated hamster heart

Author:

Zelinski Teresa A.,Choy Patrick C.

Abstract

The pathways leading to the formation of phosphatidylethanolamine in isolated hamster hearts were investigated. The contributions of the CDP-ethanolamine and the base exchange pathways were studied by perfusion with [3H]ethanolamine. The radioactivity of ethanolamine in the heart reached a maximum at 5 min of perfusion and remained constant throughout the perfusion period. Maximum labeling of phosphoethanolamine occurred at 25 min of perfusion and labeling of CDP-ethanolamine did not reach a maximum over the 30-min-perfusion period. Incorporation of radioactivity into phosphatidylethanolamine was marked by a lag during the first 15 min of perfusion, after which a linear increase was observed. This initial lag suggests the minor contribution of the base exchange pathway, as compared with the CDP-ethanolamine pathway. The CDP-ethanolamine pathway was estimated to contribute 290 nmol∙min−1∙g heart−1 to total phosphatidylethanolamine formation in hamster heart. Phosphatidylethanolamine formation via decarboxylation of phosphatidylserine was studied by perfusion of hamster hearts with labeled serine. The contribution of this pathway was estimated to be 9.0 nmol∙min−1∙g heart−1. Hence, it was concluded that phosphatidylethanolamine was synthesized by all three known pathways and the CDP-ethanolamine pathway was the major pathway for phosphatidylethanolamine biosynthesis in the mammalian heart. The low activities of phosphatidylserine decarboxylase and base exchange enzyme measured in vitro probably reflect the minor contribution of these two pathways to phosphatidylethanolamine biosynthesis.

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3